Neural Network Observer for Nonlinear Systems Application to Induction Motors
نویسندگان
چکیده
In this paper, we investigate the problem of Neural Network (NN) observer for nonlinear systems. Therefore, it can be applied to systems with higher degree of nonlinearity with any a priory knowledge about system dynamics. The proposed neuro-observer is a three-layer feedforward neural network, which is trained extensively with the error backpropagation learning algorithm including a correction term to guarantee good tracking as well as bounded NN weights. Furthermore, the Lyapunov’s direct method is used in order to ensuring the stability of the proposed non-conventional observer and of the NN weight errors. The effectiveness of the proposed state observer scheme is demonstrated through numerical simulation to reconstruct the unavailable state variables of an induction motor (IM) and especially the rotor flux despite the effect of the arisen parameters such as the load torque which is also reconstructed using the NN observer.
منابع مشابه
Speed Observer Design for Linear Induction Motor Drives
In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic
model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010